一般選抜 1次 1月21日 数学

I (1) 三角関数について、次の関係式が成り立つ.

$$\cos 2\theta =$$
 アイ $\sin^2 \theta +$ ウ , $\sin 3\theta =$ エオ $\sin^3 \theta +$ カ $\sin \theta$.

(2) $0 \le \theta < 2\pi$ のとき, 関数

$$y = -\frac{1}{12}\sin 3\theta + \frac{3}{8}\cos 2\theta - \frac{3}{4}\sin \theta$$
は、 $\theta = \frac{1}{2}\pi$ で最小値 $\frac{5\pi}{2}$ をとり、 $\sin \theta = \frac{1}{2}\pi$ のとき最大値 $\frac{5\pi}{2}$ をとる。また、 y の極値を与える θ の個数は $\frac{5\pi}{2}$ である。

┃の解答は該当する解答群から最も適当なものを一つ選べ. Π

自然対数の底を e として、以下の問いに答えよ、

(1) C を積分定数として、指数関数と単項式の積の不定積分について、次式が成り立つ、

$$\int xe^{-3x} dx = -\left(\begin{array}{c} \boxed{7} & x + \boxed{4} \\ \boxed{9} \end{array}\right) e^{-3x} + C$$

$$\int x^2 e^{-3x} dx = -\left(\begin{array}{c} \boxed{x} & x^2 + \boxed{x} & x + \boxed{9} \\ \boxed{+9} \end{array}\right) e^{-3x} + C$$

また、定積分について、

$$\int_{0}^{1} \left| \left(9 x^{2} - 1 \right) e^{-3x} \right| dx = \frac{1}{5} \left(-1 + \boxed{3} e^{\frac{2\pi}{3}} - \boxed{2\pi} e^{-3} \right)$$

が成り立つ.

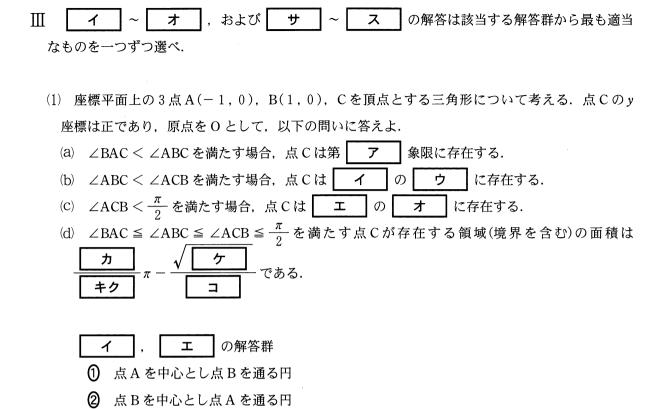
(2) p, q, r を実数の定数とする. 関数 $f(x) = (px^2 + qx + r)e^{-3x}$ が x = 0 で極大, x = 1 で極 小となるための必要十分条件は,

$$p = \boxed{ egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin$$

である. さらに, f(x)の極小値が-1であるとすると, f(x)の極大値は $\frac{e^{\square}}{\square}$ となる.

ッの解答群

- ① r > 0 ② r = 0 ③ r < 0 ④ r > 1 ⑤ r = 1 ⑥ r < 1 ② $r > \frac{1}{3}$ ③ $r = \frac{1}{3}$ ② $r < \frac{1}{3}$



③ 線分ABを直径とする円

オ

ウ

内部
 周上

③ 外部④ 重心

4 離心率が 0.5 で 2 点 O, A を焦点とする楕円
 5 離心率が 0.5 で 2 点 O, B を焦点とする楕円
 6 離心率が 0.5 で 2 点 A, B を焦点とする楕円

⑦ 線分ABを一辺にもち、重心のy座標が正である正三角形

8 線分ABを一辺にもち、重心の y 座標が正である正方形

の解答群

$\angle BAC < \angle ABC < \angle ACB$
を満たす四面体を考える. $t>0$ であり,点 D の z 座標は正であるとして,以下の問いに答え
\$.
(a) $\angle ADC = \frac{\pi}{2}$ を満たす場合,点 D は $\boxed{}$ に存在する.
(b) $\angle ADC = \angle BDC = \frac{\pi}{2}$ を満たす場合,点 D の x 座標は s であり,点 D は
$\left(s,$ $\begin{array}{c c} \boldsymbol{\mathcal{S}} & \boldsymbol{\mathcal{I}} & \boldsymbol{\mathcal{I}} \end{array}\right)$ を中心とする半径 $\begin{array}{c c} \boldsymbol{\mathcal{I}} & \boldsymbol{\mathcal{I}} & \boldsymbol{\mathcal{I}} \end{array}$ の円周上にある.
(c) 以下では、 $t = \frac{4}{3}$ とする. 設問(1)の結果から、点 C の x 座標 s は、
セ < s < - ソ + ダ √ チ ツ
の範囲の値をとりうる.この範囲で s が変化するとき, $\angle ADB = \angle ADC = \angle BDC = \frac{\pi}{2}$ を
満たす四面体 ABCD の体積は、 $s = $
サーの解答群
 ① 線分 AC の中点を通り直線 AC に垂直な平面上
② 線分 AC を直径とする球面上
③ 線分 AC を直径とする球の内部
④ 点Aを中心とし点Cを通る球面上
⑤ 点Aを中心とし点Cを通る球の内部
⑥ 線分 AC を一辺にもつ正四面体の面上
⑦ 線分ACを一辺にもつ正四面体の内部
⑧ 離心率が 0.5 で 2 点 A, C を焦点とする楕円を直線 AC のまわりに 1 回転させてできる。
立体の面上
⑨ 離心率が 0.5 で 2 点 A、C を焦点とする楕円を直線 AC のまわりに 1 回転させてできる。
立体の内部
① s ② t ③ $2s$ ④ $2t$ ⑤ $\frac{s}{2}$

(2) 座標空間内の4点A(-1,0,0), B(1,0,0), C(s, t,0), Dを頂点とし,