TRUE SENTENCES AND CORRECT INFERENCES
NOBUYOSHI MOTOHASHI

Abstract. Deduction Theorem in Mathematical Logic shows a relation between true
sentences and correct inferences. In this paper, we shall prove a theorem which shows a
relation between Godel Completeness Theorem and Deduction Theorem. This fact is called
here “Gentzen-Hilbert Theorem”. Moreover, we shall consider this theorem in more general

settings.

Logic is a study of correct inferences. But, sometimes we use this word to denote
correct inferences themselves. So, it is possible to state that logic is a study of logic.
In this paper, we shall use this word to denote these two meanings as far as any
confusion does not occur.

Correctness of inferences depends on truth values of sentences in their premises
and conclusions. Truth values of sentences depend on meanings of words in them.
Meanings of words depend on persons who use them.

Therefore, correctness of inferences and truth values of sentences depend on
persons who use them. But, there are sentences which are true for everybody and
inferences which are correct for everybody. Such sentences are called here “logically
true sentences” and such inferences are called “logically correct inferences” .

Mathematical Logic succeeded in characterizing the set of logically true sentences
and the set of logically correct inferences by Godel Completeness Theorem.

But, almost all inferences used in our ordinary life are not logically correct. So, it is
desirable to study logic used in our ordinary life, which is called “local logic”.

Our purpose of this paper is to investigate local logic. In order to do so, it is
necessary to consider relations between true sentences and correct inferences.

For each inference d from F1,Fs,...,Fy to F, the sentence 7F1V-FsV...V7F,WF is called
“kernel” of d and denoted by Ker(d).

Here, we consider the following three conditions on d:

(D dis logically correct.
(I)  Ifall premises of d are true for p,
then the conclusion of d is always true for p, for each person p.
(IID  Ker(d) is logically true.
Usually, (IT) is a definition of (I). So, () and (II) are equivalent by definition.
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(Cf.[2] for definitions of correct inferences.)
On the other hand, the statement “(I) and (III) are equivalent”, i.e.
“d 1s logically correct if and only if Ker(d) is logically true”
1s called “Deduction Theorem” and a starting point for investigations of relations
between true sentences and correct inferences.

Note here that (II) and (III) are also equivalent. Discovery of this fact is a key
contribution of Mathematical Logic.

Let S be a society. Then, sentences which are true for everybody in S are called
“S-true” and inferences which satisfy the condition obtained from (II) by replacing
“for each person p” by “for each person p in S”, are called “S-correct”. Then, we have
the following Deduction Theorem for S:

“d 1is S-correct if and only if Ker(d) is S-true”

We would like to obtain a characterization theorem of the set of S-true sentences
and a characterization theorem of the set of S-correct inferences. But, these are too
difficult to obtain meaningful results.

On the other hand, there are two types of Godel Completeness Theorem. One is a
characterization theorem of the set of S-correct inferences by using a Gentzen type
deduction system. This theorem is called “Godel Completeness Theorem of Gentzen
type”. Another is a characterization theorem of the set of S-true sentences by using
a Hilbert type deduction system. This theorem is called “Godel Completeness
Theorem of Hilbert type”. We shall show that these two theorems are equivalent in
formal languages. This fact will be called here “Gentzen-Hilbert Theorem”.

Here, we would like to consider this theorem in more general settings.

In § 1 and § 2 of this paper, we shall develop a general theory of inferences and
axiomatizations. In § 3, we shall introduce valuation frames and define true
elements and correct inferences. Furthermore, we shall prove Gentzen-Hilbert
Theorems in this section. In § 4, we shall deal with formal languages with valuation

frames and Gentzen-Hilbert Theorems in them.

§ 1. Inferences and Derivation Sets.

Let G be a non-empty set called “ground set” here. Then, we define inferences on G
as follows:
DEFINITION 1.1 (Inferences on G).

An inference d on G is a pair <{x1,Xs,...,Xa}, x> of a finite subset {x1,xs,...,xn} of G and
an element x of G, where x1,xs,...,Xn are premises of d and x 1s the conclusion of d .

An inference <{xi,xs,...,xntx> will be denoted by [xi,xs,...x, — x/ and called
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“Inference from x1,x2,...,xa to x”. The set of inferences on G 1s denoted by G*.

For each subset D of G*, we define D-proof figures as follows:
DEFINITION 1.2 (Definition of D-proof Figures).

D-proof figures with root and tops are finite trees defined by induction on
construction as follows-

(1) An element e of G is a D-proof figure itself. Also, its root and top are e.

(1) Assume that [x1,xz,...,x,» —x/ is an inference in D and Hi,Ho,...,H, are D-proof
figures such that the root of H; is x; for each i=1,2,...,n. Then, the tree H which is
obtained from H;, H,...,H, by adding x as the new root and connecting x; with x for
each 1, 1s a D-proof figure, whose set of tops is the union set of the sets of tops of
H,H,,.. H,.

(i11) Every D-proof figure is defined by (i) and (ii) above.

DEFINITION 1.3 (Derivation from A by D and Derivation Set Der(A,D)).

Let A be a subset of G and let D be a subset of G*. Then, an element e of G 1s called
“derivable” from A by D if there 1s a D-proof figure H such the root of H is e and
every top of H belongs to A. Let Der(A,D) be the set of elements which are derivable
from A by D.

For example, let G=N, A={0} and D={[n—n+2] ; neN}, then Der(A,D)=12n ; neN},
where N is the set of natural numbers.

From Definition 1.2 and 1.3 we have:

FACT 1.1. Any element of A is derivable from A by D.
FACT 1.2. If [x1,x3,...,xa—x]/ Is an inference in D and x1,xz,...,x, are all derivable
from A by D, then x is also derivable from A by D.
DEFINITION 1.4 (Definitions of d(A) and D(A)).
Let d be an inference [x1,xz,...,xa—x/ in G* and let A be a subset of G. Then,
d(A)=AU{x} if all x1,x3,...,x2 belong to A, otherwise d(A)=A ,
D(A) = the union set U{d(A) ; deD).
DEFINITION 1.5. Let A be a subset of G and let D be a subset of G*,
Then, A is closed under D if D(A)=A.
From this definition we have:
FACT 1.3. If A is closed under D, then Der(A,D)=A.
Hence, we have;
THEOREM 1.1 (Derivation Principle).
Let X be a subset of G. If A is a subset of X and X is closed under D, then Der(A,D)
1s a subset X.
(Proof) Assume that A is a subset of X and X is closed under D.
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Then, Der(A,D) is a subset of Der(X,D). Since X is closed under D, Der(X,D)=X by
Fact 1.3. Therefore, Der(A,D) is a subset X. (Q.E.D)

Next, let f be a mapping from a ground set G to another ground set Go.

Then, we can extend this mapping to the mapping from G:1* to G2* by
f( [x1,x2,....xn—xD)=[f(x1),f(x2),...,f&xn) —fx)].

Also, for each subset A of Gi, each subset D of G1* and each subset B of G, we

define f[A] ,f[D] and f~![B] by the followings:
fIA]I={f®)eGe. ; xeA}, fID]=f(d)eGz* ; deD}, £-1[B]={ xeG1 ; f( x)eB}.

From these definitions, we have:

FACT 1.4. Let f be a mapping from G; to Gs. Suppose that A 1s a subset of G; and D
is a subset of G;*. If xe Ger(A,D), then f(x) ¢ Ger({lA] f[D]), for each x in G.
DEFINITION 1.6 (X-conjugate mapping). Suppose that A is a subset G; and fis a
mapping from G to Go.Then, fis “A-conjugate” if x ¢ A and f(x)=fy) imply y ¢ A, for
anyx, yin G .

Let f be a mapping form Gi to G2. Now, we consider the following two problems:
PROBLEM 1.1. For each subset A of G; and each subset D of G1%, find a subset B of
G2 and a subset E of G2* such that f{Der(A,D)/=Der(B,E).

PROBLEM 1.2. For each subset B of G2 and each subset E of G=*, find a subset A of
G and a subset D of G;* such that ! [Der(B, E)]=Der(A, D).
As for Problem 1.1 we have:
THEOREM 1.2 (Forward Derivation Theorem).
Let f be a Der(A,D)-conjugate mapping from G; to Go.
Then, f{Der(A,D)]=Der(f[A],fID]).
(Proof) Assume that f is a Der(A,D)-conjugate mapping from G to Gs..
In order to prove that f[Der(A,D)]=Der(f[A],f[D]), it is sufficient to show the
following (1) and (2):
f[Der(A,D)] is a subset of Der(f[A] f[D]) -----(1)
Der(f[A],f[D])] is a subset of f[Der(A,D)] ----- 2
But, (1) is obvious by Fact 1.4.
To show (2), it is sufficient to show the following (3) and (4) by Derivation Principle.
f[A] is a subset of f[Der(A,D)].-----(3)
f[Der(A,D)] is closed under f[D].----(4)

(3) is obvious, because A is a subset of Der(A,D).

To show (4), let d be an arbitrary inference in f[D]. Then, d can be expressed of the
form d=[yu,ys,...,yn—=yl=f([x1,%s,...,xn—=x]) for some [x1,Xs,...,xn—x] ¢ D.

Now we assume that all y1,ys,...,ya belong to f[Der(A,D)] and are going to show that

Mathematics Subject Classification 03B22 4
Key Words and Phrases: Deduction Theorem, Completeness Theorem



y belongs to f[Der(A,D)].

Since all y1,ys,...,yn belong to f[Der(A,D)], there are z1,2s,...,zn in Der(A,D) such that
f(z1)=y1,f(z2)=ys,...,f(zn)=yn .

Since f(z1)=f(x1),f(z2)=f(x2),...,f(zn)=f(x,) and all zi1,2s,...,za belong to Der(A,D), all
X1,X2,...,Xn belong to Der(A,D),because f is Der(A,D)-conjugate.

Hence, x belongs to Der(A,D) by Fact 1.2.

Therefore, we have that y (=f(x)) belongs to f[Der(A,D)].

Since d be an arbitrary inference in f[D], this shows (4).

(Q.E.D)

REMARK 1.1. Let Gi={a,b,c}, Gs={d,e}, A={b} and D={[a—c]}.Then, Der(A,D)=A.

Define the mapping f from G to G by f(a)=d,f(b)=d and f(c)=e.

Then, fl[Al={d},f[D]={[d—el},f[Der(A,D)]=1d} and Der(f[A],f[D])=1d,e}.

These show that the assumption of Theorem 1.2 is necessary.

As for Problem 1.2, we have:
THEOREM 1.3 (Backward Derivation Theorem). Suppose that f is a mapping from
G1 onto G» and g is a mapping from G» to G; such that f(g(y))=y for all y in G-. Then,

f1[Der(B, E)/=Der(g[B].g[E]U{lg(f(x)—x] ; xeG1})

(Proof) Assume that f is a mapping from Gi onto G2 and g is a mapping from G to G1
such that f(g(y))=y for all y in G.

In order to prove that f~'[Der(B,E)l=Der(g[Bl,g[E]l U{lg(f(x)) — x] ; xeG1}), it is
sufficient to show the following (5) and (6):

f-'[Der(B,E)] is a subset of Der(g[Bl,g[E]U{[g(f(x))—x] ; xeG1}) ----- (5)
Der(g[Bl,g[E]Utlg(f(x))—x] ; xeG1}) is a subset of f'[Der(B,E)] ----- (6)

At first, we shall prove (5).

Let z be an arbitrary element of f*[Der(B,E)]. Then, f(z) ¢ Der(B,E) .

Therefore, we have g(f(z))eDer(g[B],g[E]) by Fact 1.4.

By using [g(f(z))—zl,we have z ¢ Der(g[Bl,g[E]Uullg(f(x))—x] ; xeG1}) .

Since z is an arbitrary element of f'[Der(B,E)], this means that (5) holds.

Next, we shall show (6).

Let z be an arbitrary element of Der(g[Bl,g[E]ul[g(f(x))—x] ; xeG1}).

Then, f(z)e Der(flg[BI] flg[EIlUl[f(g(fx))—fx)] ; xeG1}) by Fact 1.4.

But, Der(flg[BI] flg[EllUllf(g(f(x))—fx)] ;xeG1})

=Der(B,EU{f(x)—f(x)] ; xeG1})=Der(B,E),

because flg[Bl]=B, flg[E]]=E and [f(g(f(x)))—fx)]=[f(x)—f(x)].

So, we have f(z)eDer(B,E). Hence, we have zef '[Der(B,E)] .

Since z is an arbitrary element of Der(g[Bl,g[E]U{[g(f(x)) —>x] ; xeG1}), this means
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that (6) holds.
(Q.E.D)

§ 2. Axiomatizations.

Let T be a subset of G, called here “target set” in G. We assume that T is difficult to
understand and we want to express T in more easy style by using inferences on G,
where axiomatizations are used.

DEFINITION 2.1 (Axiomatizations).

Let A be a subset of G and let D be a subset of G*. If T=Der(A,D), then Der(A,D) is
called “axiomatization” of T in G.

DEFINITION 2.2 (Axioms, Logic, Axiom System and Logic System).

If Der(A,D) is an axiomatization of T in G , then elements of A, elements of D, the
set A and the set D are called “axioms”, “logic”, “axiom system” and “logic system”, of
this axiomatization, respectively.

Note that the logic system D of an axiomatization Der(A,D) is used as logic (correct
inferences) in this axiomatization.

FACT 2.1. We can assume that the logic system D is a subset of T* without loss of
generality, because T=Der(A,D)=Der(A,DNT%) .

Note that Der(1a},ila—x] ¢ G*; x ¢ T}) is an axiomatization of T, for each element a
of T. These axiomatizations are called “trivial axiomatizations” of T.

Almost all axiomatizations of T are not useful to understand T. So, we would like to
consider useful axiomatizations.

In order to define useful axiomatizations, we use the notion “concrete method”
without definition because its definition is very complicated, but familiar among us.
This notion is used in the form “concrete method to decide something” or “decide
something by a concrete method” (cf.[3]).

Also, here after, ground set G and the set G* of inferences on G are all concrete sets,
in the following sense:

There is a concrete method to decide x=y or not, for each element x and y of G.

There is a concrete method to decide d=e or not, for each element d and e of G*.

There is a concrete method to obtain all premises and conclusion of d, for each
element d of G*.

DEFINITION 2.3 (Decidable Sets and Semi-Decidable Sets).

A subset U of a set V is called “decidable” in V if there is a concrete method to
decide whether x belongs to U or not, for any x in V.

A subset U of a set V 1s called “semi-decidable” in V if there is a set W and a
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decidable subset Z of the direct product VXW such that U={x; <x,y> ¢ Z for some y
in W}
Then, we have the following facts:
FACT 2.2. If U 1s a decidable in V and V is a decidable in W,
then U is decidable in W.
FACT 2.8. If U and V are decidable in W,
then UUV (union set) is also decidable in W.
DEFINITION 2.4 (Decidable Mappings).

A mapping ffrom U to V 1s called “decidable” if there is a concrete method to obtain
the value f(x), for each x in U.

FACT 2.4. If f1s a decidable mapping from U to V and g is a decidable mapping from

Vito W ,then the composite mapping of f and g is a decidable mapping from U to W.
DEFINITION 2.5 (Back-Decidable Mappings).

Suppose that fis a mapping from U to V. Then, fis called “back-decidable” if the set
1} =lxeU; fx)=y} is finite and there is a concrete method to obtain a list of all
elements of this set, for each y in Y.

FACT 2.5. Suppose that fis a back-decidable mapping from G; to Go.
(1) If A is a decidable subset of G1, then f]A] is also decidable in Gbo.
(1) If D is a decidable subset of G:*, then f[D] is also decidable in G2,
(Proof)

Assume that A is a decidable subset of G; and f is a back-decidable mapping from
G1 to Ga. Let y be an arbitrary element of Gz and x1, X2,...,Xn be a list of {x;f(x)=y}.

If there is x; such that x; eA, then yef[Al.

Otherwise, y does not belong to f [A].

This is a concrete method to decide whether y belongs to f[A] or not, for each y in
Gz . This shows that (i) holds.

Assume that D is a decidable subset of G1* and f is a back-decidable mapping from
G1 to Ga. Let d be an arbitrary element of Go* and d= [y1,ys,...,ya—yl. By using lists
of the sets {x;f(x)=y1},ix:;f(X)=ya},..., x:f&)=yn},x:f(x)=y}, we have a list of the set
{eeG1* if(e)=d}.

If there is e in this list such that eeD, then de f[D].

Otherwise, d does not belong to f[D].

This is a concrete method to decide whether d belongs to f[D] or not, for each d in
Gz*. This shows that (ii) holds. (Q.E.D.)

FACT 2.6. Suppose that fis a decidable mapping from G to G. Then
{[f(x)—>x/eG* ; xeG} is decidable in G*.
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(Proof) Let d be an arbitrary element of G*. Then, we can obtain the premises and
the conclusion y of d. If d has only one premise z and f(y) = z, then d e {[f(x)—x];xeG}.
Otherwise d does not belong to {[f(x)—x];xeG}.

(Q.E.D)
DEFINITION 2.6 (Complete axiomatization).

An axiomatization of T in G 1s called “complete” if its axiom system is decidable in
G and its logic system 1s decidable in G*.

Suppose that T=Der(A,D) is a complete axiomatization of T. Then,

T=Der(A,D) ={x; there is a D-proof figure h
such that the root of h is x and every top of h belongs to A. }.
On the other hand, the subset
{<x,h>; h is a D-proof figure
such that the root of h is x and every top of h belongs to A.}
1s a decidable subset of G X H, where H is the set of D-proof figures, because A is
decidable in G and D is decidable in G*.

Hence, we have:

REMARAK 2.1. If T has a complete axiomatization, then T is semi-decidable.

Then, we obtain the following two theorems by using Facts 2.3, 2.4, 2.5 and 2.6.
THROREM 2.1 (Forward Axiomatization Theorem).

Suppose that T is a subset of G; and f 1s T-conjugate and back-decidable mapping
from G to Ga. If T has a complete axiomatization in Gy, then fIT] has a complete
axiomatization in G .

(Proof)

Assume that T has a complete axiomatization in Gi. Then, there are a decidable
subset A of G1 and a decidable subset D of Gi* such that T=Der(A,D).

By Theorem 1.2 (Forward Derivation Theorem), we have f[T]=Der(f[A],f[D]) .

Also, by Fact 2.5, f[A] is a decidable subset of Gz and f[D] is a decidable subset of
G2*. Therefore, f[T] has a complete axiomatization in Gs .

(Q.E.D)
THEOREM 2.2 (Backward Axiomatization Theorem).

Let T be a subset of Gs. Suppose that fis a decidable mapping from G; to G2 and g
is a decidable mapping form G- to G; such that f(g(y))=y, for all y in Go.

If T has a complete axiomatization in Gs, then f~'[T] has a complete axiomatization
in G
(Proof)

Assume that T has a complete axiomatization in Gso. Then, there are a decidable
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subset B of G2 and a decidable subset E of G2* such that T=Der(B,E).
By Theorem 1.3 (Backward Derivation Theorem), we have
£-1[T]=Der(g[Bl,g[ElU{[g(fx)—x] ; xeG1}) .
Here, we shall show that g is back-decidable.
By the assumption that f(g(y))=y, for all y in G2, we have-
y ¢ g '[{x}] implies f(x)=y and x=g(f(x)), for each y in Gz and each x in G.----(*)
Let x be an element of G; and let y be an element of G.
Here, decide x=g(f(x)) holds or not by Fact 2.4.
If x=g(f(x)), then g ![{x}]={f(x)} by (*).
If x#g(f(x)), then g [{x}]= ¢ (the empty set) by (*¥).
Therefore, g is back-decidable.
By Fact 2.5, g[Bl is decidable in Gi and g[E] is decidable in G1*.
Moreover, by Fact 2.3 and Fact 2.6, g[E]JU{[g(f(x))—x] ;xeG1} is decidable in G1*.
Hence, Der(g[Bl,g[E]Ul[g(f(x))—x] ;xeG1}) is a complete axiomatization of f![T].
This means that f*[T] has a complete axiomatization in Gi.

(QED.)

§ 3. Valuation frames and Gentzen-Hilbert Theorem.

In this section, we shall consider ground sets with valuation frames. By using
these valuation frames, we can define true elements of G and correct inferences
(logic) in G*. Then, there is a close connection between complete axiomatizations of
the set of true elements of G and complete axiomatizations of the set of correct
inferences in G¥.

DEFINITION 3.1 (Valuation Frame).

A Valuation Frame is a triples <V,G,val>where V ,G are non-empty sets and val is
a mapping from the product set VX G to the set {0,1/.

DEFINITION 3.2 (Valuation Set, Ground set, Valuation Mapping and Valuers).

If <V.G,val> is a valuation frame, then V ,G, val and elements of V are called
“valuation set”, “ground set”, “valuation mapping” and “valuers” of this valuation
frame, respectively.

Here, we fix a valuation frame <V,G,val> such that G and G* are concrete sets.

Let v be a valuer and let x be an element of G. Then “val(v,x)=1" is a condition on v
and x. In this paper, we use “x is true for v’ to denote this condition. Therefore,
“val(v,x)=1" is equivalent to “x is true for v ”.

Now, we shall define logically true elements of G and logically correct inferences in

G*.
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DEFINITION 3.3 (logically true elements of G).

An element x of the ground set G is called “logically true” if x is true for any valuer.
DEFINITION 3.4 (logically correct inferences in G*).

An inference d in G* is called “correct” for v if at least one premise of d is not true
for v or the conclusion of d is true for v.

An inference d in G* 1s called “logically correct” if d is correct for any valuer.

The main purpose of this paper is to investigate relations between “logically true
elements” and “logically correct inferences”. Let Tt be the set of logically true
elements of G and let Tc be the set of logically correct inferences in G*. Then, we can
consider Tt as a new target set in G and Tc as a new target set in G*.

DEFINITION 3.5. A mapping neg from G to G is called “negation mapping” if
val(v,neg(x))=1-val(v,x), for each valuer v and each x in G.
DEFINITION 3.6. A mapping dis form G X G to G is called “disjunction mapping” if

val(v,dis(x,y))=1-(1-val(v,x)) (1-val(v,y)), for any valuer v and any elements x,y of G.

In the following, we use —x to denote negation mapping and xVy to denote
disjunction mapping. Therefore,
val(v,7x)=1-val(v,x), val(v,xVy))=1-(1-val(v,x)) (1-val(v,y)).
Then,

[13 3

—x 1s true for v’ 1is equivalent to “x is not true for v’ ,

“xVy is true for v’ is equivalent to “xis true for v or y is true for v ”.
Here, we assume that there are decidable and back-decidable negation mapping
“=” and decidable and back-decidable disjunction mapping “V”.
From negation mapping and disjunction mapping, we define Ker (called “Kernel
mapping”) and Lif (called “Lifting mapping”) as follows:
DEFINITION 3.7. Ker is a mapping from G* to G defined by
Ker(d)= —x;Vx2V...V7x, Vx, where d=[x1,x3,...,xa—X].
DEFINITION 8.8. Lifis a mapping from G to G* defined by Lif(x)= —x].
Then, we have the following important theorem which shows a relation between
logically true elements and logically correct inferences:
THEOREM 3.1 (Deduction Theorem).
(1) d is correct for v if and only if Ker(d) is true for v, for any valuer v.
(11) d is logically correct if and only if Ker(d) is logically true.
From this theorem, we have:
FACT 3.1. Ker 1s Te-conjugate.
Also, by definitions of Ker and Lif we have:

FACT 8.2. Ker and Lif are decidable and back-decidable.

Mathematics Subject Classification 03B22 10
Key Words and Phrases: Deduction Theorem, Completeness Theorem



FACT 38.8. Ker(Lif(x))=x for all x in G.
FACT 38.4. Ker/Te/=Tt and Ker'[Tt/=Tc

By Theorem 2.1(Forward Axiomatization Theorem) and Theorem 2.2(Backward
Axiomatization Theorem), we have:
THROREM 3.2 (Gentzen-Hilbert Theorem).

1t has a complete axiomatization in G* if and only if Tt has a complete
axiomatization in G.

Two statements “Tc has a complete axiomatization in G*” and “Tt has a complete
axiomatization in G” are called “Completeness Theorem of Gentzen Type” and
“Completeness Theorem of Hilbert Type”, respectively. These two statements are
conditions on <V,G,val>. Therefore, Gentzen-Hilbert Theorem above shows that
Completeness Theorem of Gentzen Type and Completeness Theorem of Hilbert
Type are equivalent as conditions on <V,G,val>, which satisfy some necessary

requirements.

§ 4. Formal Languages and Valuation Frames.

In this section, we shall consider formal languages and their valuation frames. We
assume that the readers are familiar with formal languages. (cf. [1])

DEFINITION 4.1 (Formal Languages).

A formal language L is defined by the following three rules; rule of symbols, rule of
formations and rule of interpretations.

(1) Rule of symbols: Rule of symbols define the scope of symbols we can use in L.
Such symbols are called “admitted symbols” in L. Note that admitted symbols
correspond words in our ordinary languages.

(2) Rule of formations: Rule of formations define the scope of sequences of admitted
symbols, we can use in L. Such sequences are called “admitted sequences” in L.
Note that admitted sequences correspond to phrases or sentences in our ordinary
languages. Some admitted sequences are called “formal sentences” which are
Intended to express information.

(3) Rule of interpretations: Rule of interpretations are rules to assign meanings to
each admitted symbols in L, by using tools called “L-structures”.

We assume that rules of symbols and rules of formations here are concrete rule.
Therefore, formal sentences are concrete objects and inferences between formal
sentences are concrete objects. On the other hand, L-structures are not concrete
objects and rules of interpretations are not concrete rules.

Let M be an L-structure and let F be a formal sentence. Using rule of
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interpretations, we can obtain a sentence by assigning meanings to all symbols in F
by M. Such sentence is denoted by F[M]. If the sentence F[M] is true, we say that “F
is true for M”.

To understand formal languages, we shall explain admitted symbols more.

Admitted symbols of L is divided into two groups. One is variables and the other is
constants.

Variables are classified by their intended domains which depend on L-structures.
For examples, domains of individual variables consist of individuals in L-structures
and domains of set variables consist of sets of individuals in L-structures.

Constants are divided into two groups. One is constants whose meanings depend
on L-structures. For example, meanings of individual constants, function constants,
predicate constants, set constants depend on L-structures.

The other is constants whose meanings are independent of L-structures. Such
symbols are called “logical symbols”.

“K__”

As logical symbols we use (equality), “=” (negation), “ A” (conjunction) ,“\/ ”
(disjunction), “V” (universal quantifier) and “3” (existential quantifier), etc.

Of course, meanings of logical symbols are clear for us.

Here, we introduce a valuation frame <St(L),Fs(L),sat> whose valuation set is the
class St(L) of L-structures ,whose ground set is the set Fs(L) of formal sentences in
L and whose valuation mapping is the mapping sat from the product class St(L) X
Fs(L) to the set 10,1},such that sat(M,F)=1 if F is true for M and sat(M,F)=0
otherwise, for each L-structure M and each formal sentence F .

Note that St(L) is a proper class in the sense of Naive Set Theory. But, we can
replace St(L) by its subset by Lowenheim-Skolem Theorem without loss of
generality. So, we consider St(L) as a set in the following of this paper.

Note that the ground set Fs(L) and the set Fs(L)* of inferences are concrete sets.

Then, by Definitions 3.3 and 3.4, we can define “logically true sentences” in Fs(L)
and “logically correct inferences” in Fs(I)*.

DEFINITION 4.2 (Logically true sentences).

Let F be a formal sentence in Fs(L) and M is an L-structure in St(L).

F is true for M if the sentence F[M] is true.

Fis logically true if F is true for any L-structure in St(L).

Let Tt(L) be the set of logically true sentences in L.

DEFINITION 4.3 (Logically correct inferences).
Let d be an inference in Fs(L)* and M is an L-structure in St(L).

d is correct for M if at least one premise of d is not true for M or the conclusion of d
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1s true for M.

d is logically correct if d is correct for any L-structure M in St(L).

Let Te(L) be the set of logically correct inferences in Fs(L)*,

Next, we introduce the negation mapping “neg” and disjunction mapping “dis”
which are defined by negation symbol and disjunction symbol as follows:

neg(F)=—F and dis(F,G)=FVG for each formal sentences F and G.

Note that “neg” and “dis” defined here, are examples of negation mapping and
disjunction mapping introduced in §3, respectively.

By interpretation rule of L,
—F if true for M if and only if F is not true for M,
FVG is true for M if and only if F is true for M or G is true for M.

Since 7F ,FV G are concrete sequences, the negation mapping and disjunction
mapping are decidable and back-decidable.

As in §3, we can define Kernel mapping Ker and Lifting mapping Lif as follows:

Ker(d)=—F;V—FyV..V—F, V F, where d=[F1,F,...,F,—FI,

Lif(F)=[ —FI.
Then, Ker and Lif are decidable and back-decidable. Also, these mappings satisfy all
conditions stated in § 3. Therefore, we have the following theorem:
THEOREM 4.1 (Gentzen-Hilbert Theorem of L).

Te(L) has a complete axiomatization in Fs(L)* if and only if Tt(L) has a complete
axiomatization in Fs(L).

In case that L is a first-order language, Tc(L) has a complete axiomatization in
Fs(I)* and Tt(L) has a complete axiomatization in Fs(L). The former is called “Godel
Completeness of Gentzen type” and the latter is called “Godel Completeness of
Hilbert type”.

Let W be a subclass of St(L). Then, we can introduce a valuation frame
<W,Fs(L),satw> whose valuation set is W, whose ground set is Fs(I.) and whose
valuation mapping is the mapping satw obtained from sat by restricting its domain
to WX Fs(L).

Here, we can define “logically true sentences” in Fs(L) and “logically correct
inferences” in Fs(1)* with respect to the valuation frame <W,Fs(L),satw> .

Then, there are two kinds of “logically true sentences” and “logically correct
inferences”. One is those with respect to <St(L),Fs(L),sat> and another is those with
respect to <W,Fs(L),satw>.

In order to distinguish between them, we use “W-true sentences” and “W-correct

inferences”, instead of “logically true sentences” and “logically correct inferences”
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with respect to <W,Fs(L),satw>.
Therefore, for each sentence F in L and each inference d in L*,
F'is W-true sentence if and only if F'is true for any L-structure in W,
d is W-correct inference if and only if d 1s correct for any L-structure in W.
Let Tt(W) be the set of W-true sentences in L and Te(W) be the set of W-correct
inferences in L*
Then, Deduction Theorem of the form “d is W-correct inference if and only if Ker(d)
is W-true sentence” holds.
Hence we have that Ker[Tc(W)]=Tt(W) and Ker'[Tt(W)]=Tc(W).
Therefore, we obtain the following generalization of Genzten-Hilbert Theorem.
THEOREM 4.4 (Generalized Gentzen-Hilbert Theorem).
Te(W) has a complete axiomatization in Fs(L)* if and only if Tt(W) has a complete
axiomatization in Fs(L).
Let W be St(L) in the above theorem, then we have Theorem 4.1(Gentzen-Hilbert
Theorem).
Finally, we would like to comment that formal languages treated here include not

only first-order languages but also many other formal languages.
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